Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tipo del documento
Intervalo de año
1.
PLoS Pathog ; 19(5): e1011409, 2023 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2323254

RESUMEN

The hallmark of severe COVID-19 involves systemic cytokine storm and multi-organ injury including testicular inflammation, reduced testosterone, and germ cell depletion. The ACE2 receptor is also expressed in the resident testicular cells, however, SARS-CoV-2 infection and mechanisms of testicular injury are not fully understood. The testicular injury could be initiated by direct virus infection or exposure to systemic inflammatory mediators or viral antigens. We characterized SARS-CoV-2 infection in different human testicular 2D and 3D culture systems including primary Sertoli cells, Leydig cells, mixed seminiferous tubule cells (STC), and 3D human testicular organoids (HTO). Data shows that SARS-CoV-2 does not productively infect any testicular cell type. However, exposure of STC and HTO to inflammatory supernatant from infected airway epithelial cells and COVID-19 plasma decreased cell viability and resulted in the death of undifferentiated spermatogonia. Further, exposure to only SARS-CoV-2 Envelope protein caused inflammatory response and cytopathic effects dependent on TLR2, while Spike 1 or Nucleocapsid proteins did not. A similar trend was observed in the K18-hACE2 transgenic mice which demonstrated a disrupted tissue architecture with no evidence of virus replication in the testis that correlated with peak lung inflammation. Virus antigens including Spike 1 and Envelope proteins were also detected in the serum during the acute stage of the disease. Collectively, these data strongly suggest that testicular injury associated with SARS-CoV-2 infection is likely an indirect effect of exposure to systemic inflammation and/or SARS-CoV-2 antigens. Data also provide novel insights into the mechanism of testicular injury and could explain the clinical manifestation of testicular symptoms associated with severe COVID-19.


Asunto(s)
COVID-19 , Masculino , Ratones , Animales , Humanos , COVID-19/metabolismo , Testículo , SARS-CoV-2 , Efecto Espectador , Inflamación/metabolismo , Ratones Transgénicos
3.
Front Immunol ; 13: 1076724, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198914

RESUMEN

Background: Low-density granulocytes (LDGs) are a distinct subset of neutrophils whose increased abundance is associated with the severity of COVID-19. However, the long-term effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on LDG levels and phenotypic alteration remain unexplored. Methods: Using participants naïve to SARS-CoV-2 (NP), infected with SARS-CoV-2 with no residual symptoms (NRS), and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC), we compared LDG levels and their phenotype by measuring the expression of markers for activation, maturation, and neutrophil extracellular trap (NET) formation using flow cytometry. Results: The number of LDGs was elevated in PPASC compared to NP. Individuals infected with SARS-CoV-2 (NRS and PPASC) demonstrated increased CD10+ and CD16hi subset counts of LDGs compared to NP group. Further characterization of LDGs demonstrated that LDGs from COVID-19 convalescents (PPASC and NRS) displayed increased markers of NET forming ability and aggregation with platelets compared to LDGs from NP, but no differences were observed between PPASC and NRS. Conclusions: Our data from a small cohort study demonstrates that mature neutrophils with a heightened activation phenotype remain in circulation long after initial SARS-CoV-2 infection. Persistent elevation of markers for neutrophil activation and NET formation on LDGs, as well as an enhanced proclivity for platelet-neutrophil aggregation (PNA) formation in COVID-19 convalescent individuals may be associated with PPASC prognosis and development.


Asunto(s)
COVID-19 , Humanos , Estudios de Cohortes , COVID-19/metabolismo , SARS-CoV-2 , Granulocitos/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA